Mixed Finite Element Methods for Incompressible Flow: Stationary Navier-Stokes Equations

نویسندگان

  • Zhiqiang Cai
  • Chunbo Wang
  • Shun Zhang
چکیده

In [Z. Cai, C. Tong, P. S. Vassilevski, and C. Wang, Numer. Methods Partial Differential Equations, to appear], the authors developed and analyzed a mixed finite element method for the stationary Stokes equations based on the pseudostress-velocity formulation. The pseudostress and the velocity are approximated by a stable pair of finite elements: Raviart–Thomas elements of index k ≥ 0 and discontinuous piecewise polynomials of degree k ≥ 0, respectively. This paper extends the method to the stationary, incompressible Navier–Stokes equations. Under appropriate assumptions, we show that the pseudostress-velocity formulation of the Navier–Stokes equation and its discrete counterpart have branches of nonsingular solutions, and error estimates of the mixed finite element approximations are established as well.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

S Cilab F Inite E Lement S Olver for Stationary and Incompressible N Avier - S Tokes Equations

In this paper we show how Scilab can be used to solve Navier-stokes equations, for the incompressible and stationary planar flow. Three examples have been presented and some comparisons with reference solutions are provided. Contacts [email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. Navier-Stokes finite element sol...

متن کامل

A Characteristics-Mix Stabilized Finite Element Method for Variable Density Incompressible Navier-Stokes Equations

This paper describes a characteristics-mix finite element method for the computation of incompressible Navier-Stokes equations with variable density. We have introduced a mixed scheme which combines a characteristics finite element scheme for treating the mass conservation equation and a finite element method to deal with the momentum equation and the divergence free constraint. The proposed me...

متن کامل

Two-Level Stabilized Finite Volume Methods for Stationary Navier-Stokes Equations

We propose two algorithms of two-level methods for resolving the nonlinearity in the stabilized finite volume approximation of the Navier-Stokes equations describing the equilibrium flow of a viscous, incompressible fluid. A macroelement condition is introduced for constructing the local stabilized finite volume element formulation. Moreover the two-level methods consist of solving a small nonl...

متن کامل

Mixed Finite Element Methods for Incompressible Flow: Stationary Stokes Equations

In this article, we develop and analyze a mixed finite element method for the Stokes equations. Our mixed method is based on the pseudostress-velocity formulation. The pseudostress is approximated by the RaviartThomas (RT) element of index k ≥ 0 and the velocity by piecewise discontinuous polynomials of degree k. It is shown that this pair of finite elements is stable and yields quasi-optimal a...

متن کامل

Least Squares Finite Element Methods for Viscous, Incompressible Flows

This paper is concerned with finite element methods of least-squares type for the approximate numerical solution of incompressible, viscous flow problems. Our main focus is on issues that are critical for the success of the finite element methods, such as decomposition of the Navier-Stokes equations into equivalent first-order systems, mathematical prerequisites for the optimality of the method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2010